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Abstract

In the framework of a 2HDM e�ective lagrangian for the MSSM, we analyse important

phenomenological aspects associated with quantum soft SUSY-breaking e�ects that modify the

relation between the bottom mass and the bottom Yukawa coupling. We derive a resummation

of the dominant supersymmetric corrections for large values of tan� to all orders in perturbation

theory. With the help of the operator product expansion we also perform the resummation of

the leading and next-to-leading logarithms of the standard QCD corrections. We use these

resummation procedures to compute the radiative corrections to the t ! bH+, H+ ! t�b

decay rates. In the large tan� regime, we derive simple formulae embodying all the dominant

contributions to these decay rates and we compute the corresponding branching ratios. We

show, as an example, the e�ect of these new results on determining the region of theM
H+

{tan�

plane excluded by the Tevatron searches for a supersymmetric charged Higgs boson in top quark

decays, as a function of the MSSM parameter space.
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1 Introduction

In minimal supersymmetric extensions of the Standard Model (SM), soft Supersymmetry (SUSY)

breaking terms [1] are introduced to break SUSY without spoiling the cancellation of quadratic

divergences in the process of renormalization. These terms must have dimensionful couplings,

whose values determine the scale M
SUSY

, lower than a few TeV, above which SUSY is restored;

they are also responsible for the mass splittings inside the supersymmetric multiplets. Little is

known for sure about the origin of these SUSY-breaking terms. Upcoming accelerators will test

the energy range where we hope that the �rst supersymmetric particles will be found. From their

masses and couplings we could learn about the pattern of SUSY-breaking at low energies, which

translates, through the renormalization group equations, into the pattern of breaking at the scale

at which SUSY-breaking is transmitted to the observable sector. Meanwhile, one can obtain some

information on the soft terms by looking at any low-energy observables sensitive to their values,

and in particular to the Yukawa sector of the theory.

In this work we consider the simplest supersymmetric version of the SM, the Minimal Super-

symmetric Standard Model (MSSM) [2]. We analyse the limit of a large ratio v2=v1 = tan� of the

vacuum expectation values v1, v2 of the Higgs doublets. We show that in this limit a large class

of physical observables involving the Yukawa coupling of the physical charged Higgs boson can be

described in terms of a two-Higgs-doublets model (2HDM) [3] e�ective lagrangian, with speci�c

constraints from the underlying MSSM dynamics.

The �nding of a charged Higgs boson would be instant evidence for physics beyond the SM.

It would also be consistent with low-energy SUSY, as all supersymmetric extensions of the SM

contain at least a charged Higgs boson, H�. Current experiments, looking at the kinematical

region M
H+ < mt �m

b
, have been able to place an absolute bound of M

H+ > 71:0 GeV at the

95% con�dence level [4] and/or to exclude regions of the M
H+{BR(t ! bH+) plane [5, 6].1 If

the charged Higgs mass happens to be greater than the top mass, future e+e�, p�p and even e�p

accelerators will have a chance to �nd it [8-10].

Present bounds from LEP on a SM light Higgs boson, MhSM > 105:6 GeV [11], are beginning

to put strong constraints on values of tan� lower than a few, a region that can only be consistent

with low-energy SUSY if the third-generation squark masses are large, of the order of a TeV and,

in addition, if the mixing parameters in the stop sector are of the order of, or larger than, the

stop masses. Therefore, the LEP limits give a strong motivation for the study of the large tan�

region. The region of large values of tan� is also theoretically appealing, since it is consistent

with the approximate uni�cation of the top and bottom Yukawa couplings at high energies, as

happens in minimal SO(10) models [12, 13]. The aim of this work is to compare, for large values

of the tan� parameter, the e�ective potential results truncated at one loop with the diagrammatic

one-loop computation for the supersymmetric QCD (SUSY-QCD) and electroweak (SUSY-EW)

corrections in the coupling of �tbH+ [14-17]. We then use the e�ective potential approach to include

a resummation of the SUSY-QCD and SUSY-EW e�ects and we show how relevant these higher-

order e�ects are to the �nal evaluation of the H+ ! t�b and t! bH+ partial decay rates.

Although diagrammatic computations of the O(g�s) quantum corrections to these observables

have existed in the literature for several years, either in the context of a generic two-Higgs-doublets

model [18-21],2 or in supersymmetric extensions of the Standard Model [14-17], our analysis goes

beyond these studies in the following:

� It resums leading and next-to-leading logarithms of the type �s log(mb
=mt) or

1See also the study in ref. [7], where it is shown how these bounds are a�ected by some usually overlooked decay

modes in the intermediate tan� >
� 1 region.

2For the QCD corrections to the neutral Higgs decay rate the reader is referred to [22, 23] and references therein.
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Figure 1: One-loop SUSY-QCD diagram contributing to the e�ective coupling �hb. The solid lines

inside the loop denote the gluino propagator, the dashed lines correspond to sbottom propagators.

The cross represents the M~g insertion coming from the gluino propagator.

�s log(mb
=M

H+), because these terms are of the same size as the tree-level result.

� It includes the potentially large supersymmetric corrections responsible for the leading be-

haviour at large tan� � 10 values, with an improved treatment of the higher-order contribu-

tions incorporated into the e�ective lagrangian: the corrections of order (�s� tan�=MSUSY
)n

are included to all orders n = 1; 2; : : : These corrections do not vanish if the parameter � and

the soft SUSY-breaking masses are pushed to large values, which is a reection of the lack of

supersymmetry in the low-energy theory.

� It is well suited for numerical evaluation, because it includes all the relevant terms, by means

of very simple formulae. Therefore, the bulk of the quantum corrections can be implemented

in a fast Monte Carlo generator.

We would like to stress the second point: even for a heavy supersymmetric spectrum, depending

on the ratios and relative signs of the Higgs mass parameter, �, and of the soft SUSY-breaking

parameters involved, the supersymmetric QCD and EW corrections can be very large, a situation

in which the higher-order e�ects are sizeable.

The text is organized as follows. In section 2 we derive the coe�cients of the 2HDM e�ective

lagrangian which are a�ected by large SUSY threshold e�ects. Section 3 provides simple analytical

expressions for the QCD and electroweak quantum corrections to the t! bH+ andH+ ! t�b partial

decay rates, including the resummation of the large leading and next-to-leading QCD logarithms

and of the potentially large tan�-enhanced SUSY corrections. Section 4 is devoted to the numerical

analysis of the partial widths, comparing them to the previously existing one-loop results [15, 17].

To exemplify the importance of these novel computations, we show in section 5 their e�ects on the

BR's of t! bH+ and H+ ! t�b. As an example we study the e�ects of these results on the limits

on the M
H+ mass derived by the D0 collaboration (similar limits have been obtained by the CDF

collaboration) via the indirect search of the charged Higgs in t�t decays. We reserve section 6 for

our summary and conclusions.

2 E�ective lagrangian

2.1 Supersymmetric corrections

The e�ective 2HDM lagrangian contains the following couplings of the bottom quark to the CP-even

neutral Higgs bosons [24]:

hbH
0
1b
�b+�hbH

0
2b
�b : (1)
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The H0
2b
�b tree-level coupling is forbidden in the MSSM. Yet a non-vanishing �hb is dynamically

generated at the one-loop level by the diagram of �g. 1.3

Although �hb is loop-suppressed, once the Higgs �elds H
0
1;2 acquire their vacuum expectation

values v1;2, the small �hb shift induces a potentially large modi�cation of the tree-level relation

between the bottom mass and its Yukawa coupling, because it is enhanced by tan� = v2=v1:

mb = hbv1 �! mb = v1 (hb +�hb tan�) = hbv1 (1 + �mb) : (2)

Since the numerical value of mb is �xed from experiment, equation (2) induces a change in the

e�ective Yukawa coupling. This a�ects not only the CP-even neutral Higgs �eld, but the whole

Higgs multiplet, with phenomenological consequences for the charged Higgs particle. In particular,

eq. (2) modi�es the Yukawa coupling of the charged Higgs to top and bottom quarks as follows:

hb sin� =
m
b

v
tan� �! hb =

m
b

v

1

1 +�m
b

tan�; (3)

where v =
q
v21 + v22 ' 174GeV. In the last equation we have assumed a large tan� regime.

It turns out that, in the MSSM with large tan�, the dominant supersymmetric radiative cor-

rections to the Yukawa interactions of the Higgs doublet H1 = (H+
1 ;H

0
1 ) stem from the relation

(3). Explicit loop corrections to the H1ff
0 Yukawa coupling are suppressed by at least one power

of tan�. This remarkable feature has far-reaching consequences: �rst in observables involving the

coupling hb of H1 to bottom quarks the MSSM behaves like a two-Higgs-doublets model. The main

e�ect of a heavy SUSY spectrum is to modify the coupling strength via �m
b
in eq. (2), which

depends on the masses of the supersymmetric particles. In certain regions of the parameter space

a sizeable enhancement of hb occurs. Secondly these dominant corrections encoded in �m
b
are

universal. They are not only equal for the neutral and the charged Higgs bosons, on which we will

focus in the following, but they are also independent of the kinematical con�guration. This means

that they a�ect the decay rate of a charged Higgs into a top and bottom (anti-) quark in the same

way as the tbH+ vertex in a rare b-decay amplitude or, after replacing the top by a charm quark, as

Higgs-mediated b ! c decays. Further the universality property of these tan�-enhanced radiative

corrections allows for a simple inclusion into the Higgs search analysis.

The proper tool to describe such universal e�ects is an e�ective lagrangian. Expanding (1) to

include the charged Higgs sector one �nds that the relevant terms in the large tan� limit are:

L = �hb bLbRH0
1 + hb Vtb sin� tLbRH

+ ��hb bLbRH
0
2 + h:c: (4)

�hb is the loop-induced Yukawa coupling associated with the supersymmetric QCD corrections in

�g. 1 and similar electroweak contributions. H+ is the physical charged Higgs boson. The Higgs

mechanism de�nes the relation between the bottom mass mb and the couplings hb and �hb in

L: calculating the tree-level bbH0
1 and one-loop bbH0

2 vertices with zero Higgs momentum, and

replacing the Higgs �elds by their vacuum expectation values v1;2, yields the desired relation in

eqs. (2) and (3):

�mb =
�hb

hb
tan� = �m

SQCD

b
+�mSEW

b ; (5)

which contains the tan�-enhanced radiative corrections. The supersymmetric QCD corrections of

�g. 1 read [13]

�m
SQCD

b
=

2�s
3�

M~g� tan� I(m~b1
;m~b2

;M~g) : (6)

3There are similar diagrams involving supersymmetric electroweak quantum corrections, see section 3.2.
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Here �s is the strong coupling constant and � is the mass parameter coe�cient of the �ijH
1
i
H2
j

term in the superpotential. The vertex function I, which depends on the masses m~b1;2
of the two

bottom squark mass eigenstates and the gluino mass M~g, reads [13]

I(a; b; c) =
1

(a2 � b2)(b2 � c2)(a2 � c2)

 
a2b2 log

a2

b2
+ b2c2 log

b2

c2
+ c2a2 log

c2

a2

!
: (7)

An interesting limit of eq. (6) applies when all mass parameters are of equal size. One has, depending

on the sign of �

�m
SQCD

b
= �

�s(Q =M
SUSY

)

3�
tan� ; (8)

clearly showing that the e�ect does not vanish for a heavy SUSY spectrum and can be of O(1) for
large tan� values.

For sizeable values of the trilinear soft SUSY-breaking parameter At, the supersymmetric elec-

troweak corrections are dominated by the charged higgsino-stop contribution, which is proportional

to the square of the top Yukawa coupling, ht = mt=v2. Wino-sbottom contributions are generally

smaller, being proportional to the square of the SU(2)L gauge coupling, g, and to the soft SUSY

breaking mass parameter M2. Neglecting the bino e�ects, which we found to be numerically irrel-

evant, these corrections read [25]

�mSEW

b =
h2t
16�2

�At tan� I(m~t1
;m~t2

; �)

�
g2

16�2
�M2 tan�

�
cos2�~t I(m~t1

;M2; �) + sin2�~t I(m~t2
;M2; �)

+
1

2
cos2�~b I(m~b1

;M2; �) +
1

2
sin2�~b I(m~b2

;M2; �)
i
: (9)

When including radiative corrections, one has to specify the de�nition of the quark mass m
b

appearing in the leading order: m
b
denotes the pole mass corresponding to the on-shell renormal-

ization scheme, in which the on-shell self-energy is exactly cancelled by the mass counterterm.

Note that the supersymmetric corrections contained in �m
b
enter hb in eq. (3) as a factor 1=(1+

�m
b
). To order �s one is entitled to expand this factor as (1 ��m

b
). In the phenomenologically

most interesting case of a large j�m
b
j of O(1), this leads to disturbingly large numerical ambiguities.

Their resolution seems to require painful higher-order loop calculations, and a large j�m
b
j may

even put perturbation theory into doubt. Yet these tan�-enhanced contributions have the surprising

feature that they are absent in higher orders:

There are no contributions to �m
b
of order 

�s
�

M
SUSY

tan�

!n
(10)

for n � 2.

Here M
SUSY

represents a generic mass of the supersymmetric particles. An analogous result

applies to the electroweak corrections. In other words, to the considered order, �m
b
is a one-loop

exact quantity, and the factor 1=(1 +�m
b
) contains the corrections to hb of the form in (10) to all

orders in �s.

To prove our theorem, consider possible n-loop SUSY-QCD contributions to �m
b
proportional

to tann �: the only possible source of additional factors of tan� is the o�-diagonal element of

the bottom squark mass matrix, ��m
b
tan�, which can enter the result via the squark masses
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Figure 2: Two-loop SUSY-QCD di-

agram containing a large logarithm

log (M
SUSY

=m
b
).

H0
2
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g
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��hb

Figure 3: One-loop diagram derived from the

e�ective lagrangian in (4) corresponding to

the diagram in �g. 2. It contains the large

logarithm of �g. 2 as logm
b
=Q. This loga-

rithm is summed to all orders by solving the

renormalization group for hb in eq. (4).

as m~b2

2 � m~b1

2 ' 2m
b
� tan� or through counterterms to the squark masses. It is easier to track

the factors of �m
b
tan� by working with \chiral" squark eigenstates and assigning these factors to

\chirality ipping" two-squark vertices. Thus any extra factor of tan� is necessarily accompanied

by a factor of m
b
�. This dimensionful factor is multiplied with some power of inverse masses

stemming from the loop integrals. The next step in our reasoning is to show that the loop integrals

always give powers of 1=M
SUSY

and can never produce a factor of 1=mn

b
. The appearance of any

inverse power of m
b
in a loop integral would imply a power-like infrared singularity in the limit

mb ! 0 with gluino and squark masses held �xed. But the KLN theorem [26] guarantees the

absence of any infrared divergence in all bare diagrams except for those in which gluons couple to

the b-quark lines. A two-loop example of the latter set is shown in �g. 2. The infrared behaviour

of these diagrams can be studied with the help of the operator product expansion (OPE). The

result of the OPE is nothing but the e�ective lagrangian in (4). To apply the OPE to our problem

we �rst have to contract the lines with heavy supersymmetric particles to a point, i.e. we replace

the MSSM by an e�ective theory in which the heavy SUSY particles are integrated out. For the

case of the diagram in �g. 2 this yields the diagram in �g. 3, in which the loop-induced interaction

is represented by the dimension-4 operator bbH0
2 . The information on the heavy SUSY masses is

contained in the Wilson coe�cient �hb in eq. (4). The key feature of the OPE exploited in our

proof is the fact that the e�ective diagram in �g. 3 and the original diagram in �g. 2 have the

same infrared behaviour. Power counting shows that the diagram of �g. 3 has dimension zero. It

depends only on m
b
and the renormalization scale Q. Since Q enters the result logarithmically,

the diagram of �g. 3 depends on m
b
as logm

b
=Q, no power-like dependence on m

b
is possible.

This argument |essentially power counting| immediately extends to higher orders. Terms from

diagrams in which gluons are connected with the b-quark line and one of the SUSY-particle lines

in the heavy loop, are either infrared-�nite or suppressed by even one more power of m
b
=M

SUSY
,

because they are represented in the OPE by operators with dimension higher than 4. Finally there

are diagrams with counterterms. In mass-independent renormalization schemes the counterterms

are polynomial in m
b
. In the on-shell scheme the diagrams with counterterms can be infrared-

6



bL

~ba

bR

~g

Figure 4: One-loop SUSY-QCD diagram contributing to �m
b
.

divergent for m
b
! 0, but only logarithmically. In conclusion the loop integrals cannot give factors

of 1=mn

b
. Therefore any correction to �mb of order �

n
s tan

n � comes with a suppression factor of

mn

b
=Mn

SUSY
. Higher-order loop corrections to �m

b
are therefore either suppressed by m

b
=M

SUSY

or lack the enhancement factor of tan�, which proves our theorem.

So far we have discussed �m
b
from the one-loop vertex function of �g. 1 as in [13]. A di�erent

viewpoint has been taken e.g. in [14]: the renormalization of the Yukawa coupling (m
b
=v) tan � is

performed by adding the mass counterterm to m
b
. In the large tan� limit and to one-loop order,

this amounts to the replacement

m
b

v
tan� �! hb =

m
b

v
(1��mb) tan� (11)

instead of (3). This procedure gives the correct renormalization of the Yukawa coupling in regular-

ization schemes respecting gauge symmetry [27], such as dimensional regularization. The relation

to the Yukawa renormalization using the vertex function in �g. 1 leading to (2) is provided by a

Slavov-Taylor identity [27]. In general a correction factor related to the anomalous dimension of

the quark mass occurs in (2), but the large tan�-enhanced contributions considered by us are �nite

and do not contribute to the anomalous mass dimension. To one-loop order, eqs. (11) and (3)

are equivalent. Yet the crucial di�erence here is the point that ��m
b
in eq. (11) stems from the

supersymmetric contribution to the quark self-energy diagram in �g. 4. While the vertex diagram

has dimension zero, the self-energy diagram has dimension one and the above proof does not apply.

Indeed, higher-order corrections to �g. 4 do contain corrections of the type in (10). In Appendix

A these corrections are identi�ed and it is shown that they sum to

1

1 +�m
b

; (12)

so that both approaches lead to the same result (3) to all orders in (�=M
SUSY

)�s tan�.

2.2 Renormalization group improvement

The tan�-enhanced supersymmetric corrections discussed so far are not the only universal correc-

tions. It is well known that standard QCD corrections to transitions involving Yukawa couplings

contain logarithms log (Q=m
b
), where Q is the characteristic energy scale of the process. For the

decays discussed in sects. 3{5 one has Q = mH+ or Q = mt and �s log (Q=mb
) is of O(1) thereby

spoiling ordinary perturbation theory. The summation of the leading logarithms

�ns log
n
Q

m
b

; n = 0; 1; 2 : : : (13)

to all orders in perturbation theory has been performed in [22] for the standard QCD corrections

to the tLbRH
+ Yukawa interaction. This summation is e�ectively performed by evaluating the
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running Yukawa coupling hb at the renormalization scale Q. This amounts to the use of the

running mass at the scale Q, m
b
(Q), after expressing hb sin� in terms of (m

b
=v) tan�. Hence these

large logarithms are likewise universal, depending only on the energy scale Q at which the Yukawa

coupling is probed, and can also be absorbed into the e�ective lagrangian.

The full one-loop QCD corrections to neutral [22] and charged [18] Higgs decay and top decay

[21] also contain non-logarithmic terms of the order �s. A consistent use of these one-loop corrected

expressions therefore requires the summation of the next-to-leading logarithms

�n+1s logn
Q

m
b

; n = 0; 1; 2 : : : (14)

to all orders, because all these terms have the same size as the one-loop �nite terms. Since squarks

and gluinos are heavy, leading logarithms of the type in (13) are absent in the supersymmetric

corrections shown in �g. 1. It is important to note, however, that this is no longer true for the

next-to-leading logarithms: dressing �g. 1 with n gluons leads to diagrams involving the logarithmic

terms of (14). A two-loop diagram yielding a term of order �2s log(Q=mb
) is shown in �g. 2. These

subleading logarithms have escaped attention so far. In the remainder of this section we will address

their proper summation.

In [22] it has been proved that all leading logarithms occurring in neutral Higgs decays can be

absorbed into the running mass m
b
(Q). This proof is based on the KLN theorem [26] and exploits

the fact that there are only two mass scales, m
b
and Q, in the loop corrections to neutral Higgs

decay. This reasoning cannot be extended to the next-to-leading logarithms accompanying the

supersymmetric corrections of �g. 2, where both heavy and light masses occur in the loops. Here

we will use the OPE instead and apply standard renormalization group methods to the e�ective

coupling in eq. (4). This is not only much more elegant than the method used in [22], it will also

show us how to consistently combine the summation of large logarithms with the all-order result

of the tan�-enhanced terms derived in section 2.1.

To apply the OPE and the renormalization group one must �rst employ a mass-independent

renormalization scheme, such as the MS scheme [28]. At the scale Q =M
SUSY

the heavy particles,

squarks and gluinos, are integrated out. The interaction mediated by the loop diagram in �g. 1 is

now represented by the e�ective operator bbH0
2 . Its Wilson coe�cient equals

��hb (Q =MSUSY ) : (15)

Here and in the following, MS quantities are overlined. The renormalization scale Q is explicitly

displayed in (15). Note that �hb depends on Q through �s,M~g and the squark masses. The relation

(3) between hb and m
b
is de�ned at the low scale Q = m

b
. Hence we must evolve (15) down to

Q = m
b
. Since we encounter the same operator bb as in the leading order, the renormalization

group evolution down to Q = m
b
is also identical to the leading-order evolution and just amounts

to the use of the running Yukawa coupling hb (Q = m
b
) in the desired relation:

hb (Q =mb) =
mb (Q = m

b
)

v

1

1 +�m
b
(Q =M

SUSY
)
tan�: (16)

Notice that �m
b
is evaluated at the high scale Q = M

SUSY
: the heavy particles `freeze out' at

the heavy scale Q = M
SUSY

and the strong coupling �s in �m
b
likewise enters the result at this

scale. This can be intuitively understood, as the loop momenta in �g. 1 probe the strong coupling

at typical scales of order M
SUSY

. Further any renormalization group running below Q = M
SUSY

is done with the standard model result for �-functions and anomalous dimensions. Since the QCD

contributions to the anomalous dimensions of hb and mb are the same, hb at an arbitrary scale Q
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is given by

hb (Q) =
mb (Q)

v

1

1 +�m
b
(M

SUSY
)
tan�: (17)

If one expands hb(MSUSY
) around hb(mb

) to order �2s, one reproduces the large logarithm of the

form log(M
SUSY

=m
b
) contained in the diagram of �g. 2. The running mass must be evaluated with

the next-to-leading order formula:

mb (Q) = U6 (Q;mt) � U5 (mt;mb) �mb (mb) ; (18)

where we have assumed that there are no other coloured particles with masses between Q and mt.

The evolution factor Uf reads

Uf (Q2; Q1) =

�
�s (Q2)

�s (Q1)

�d(f) �
1 +

�s (Q1)� �s (Q2)

4�
J (f)

�
;

d(f) =
12

33� 2 f
;

J (f) = �
8982 � 504 f + 40 f2

3 (33 � 2 f)2
: (19)

Here f is the number of active quark avours. For Q � mt one must replace U6 (Q;mt) �U5 (mt;mb)

by U5 (Q;mb) in eq. (18). J (f) depends on the renormalization scheme, the result in eq. (19) is

speci�c to the MS scheme. The b-quark mass in this scheme is accurately known from �(1S)

spectroscopy and momenta of the bb production cross section [29]:

mb (mb) = (4:25 � 0:08)GeV: (20)

Physical observables such as the H+ and top decay rates discussed in sections 3-5 are scheme

independent to the calculated order. Passing to a di�erent renormalization scheme would change

J (f), but in eq. (18) the change in �s(mb)J
(5) is compensated by a corresponding change in the

numerical value of mb (mb). Likewise the scheme dependence in �s(Q)J
(6) is compensated by the

one-loop standard QCD corrections [18, 21] to the decay rates. This concludes the discussion of

the universal renormalization group e�ects. A discussion of additional aspects speci�c to the decay

rates �(t! bH+) and �(H+ ! t�b) can be found in Appendix B.

Finally we arrive at the desired e�ective lagrangian for large tan�:

L =
g

2MW

mb(Q)

1 + �m
b

�
tan�A i b5b(Q)

+
p
2 Vtb tan� H

+ tLbR(Q) +
p
2 V �

tb tan� H
� bRtL(Q)

+

�
sin�

cos �
��mb

cos�

sin�

�
h bb(Q)

�
�
cos�

cos �
+�mb

sin�

sin�

�
H bb(Q)

#
; (21)

where the renormalization scale Q entering mb and the renormalization constants of the quark

bilinears are explicitly shown. In equation (21) we have expressed L in terms of the physical Higgs

�elds H;h;A and H+ and traded v for the W mass and the SU(2) gauge coupling g. We have used

the standard convention [3, 24] for these �elds and the h{H mixing angle �. For completeness also
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the coupling of the CP-odd Higgs boson A has been included. The phenomenology of the neutral

Higgs bosons in the large tan� regime has been studied in detail in [24].

The e�ective lagrangian in eq. (21) describes the Ab5b and H+ tLbR interactions correctly for

large tan�, irrespective of the mass hierarchy between M
SUSY

and M
H+ . Even if M

SUSY
�M

H+ ,

the supersymmetric loop form factors of these interactions are suppressed by one power of tan�

with respect to the terms described by L. On the contrary, this is no longer true for the H bLbR
and h bLbR form factors [30]. For these couplings L is only correct in the limit M2

SUSY
�M2

A
.

3 Quantum corrections to �(t! bH
+), �(H+

! t�b)

The tree-level partial widths read

�tree(t! bH+) =
g2

64�M2
W

jVtbj2m3
t �

1=2 (1; q
H+ ; qb)�h

(1� q
H+ + qb)

�
cot2� + qb tan

2�
�
+ 4 qb

i
; (22)

�tree(H+ ! t�b) =
g2Nc

32�M2
W

jVtbj2M3
H+ �

1=2 (1; rt; rb)�h
(1� rt � rb)

�
rt cot

2� + rb tan
2�
�
� 4 rtrb

i
; (23)

where we have de�ned the ratios qb;H+ = m2
b;H+=m

2
t , rb;t = m2

b;t
=M2

H+ and the �1=2 term is a

kinematic factor

� (1; x; y) = 1 + x2 + y2 � 2 (x+ y + x y) :

From now on, we shall assume jVtbj ' 1 and neglect light fermion generations. For values of the

parameter tan� >
� 15 (the inexion point being given by tan� >

�

q
mt=mb

� 7) virtual quantum

e�ects are largely dominated by the corrections to the right-handed bottom Yukawa coupling. In

that limit the tree-level widths reduce to

�tree(t! bH+) =
g2m3

t

64�M2
W

(1� q
H+)

2 qb tan
2� ; (24)

�tree(H+ ! t�b) =
g2Nc

32�M2
W

M3
H+ (1� rt)

2 rb tan
2� ; (25)

in which we have also taken into account the smallness of m
b
as compared to mt, MH+ .

3.1 Standard QCD correction

As we have proved in Appendix B applying the OPE, both leading and subleading log(Q=m
b
)

logarithms in the t ! bH+ and H+ ! t�b renormalized decay widths can be resummed by using

the running, �2s corrected, bottom mass in the zeroth-order expressions. The one-loop �nite QCD

terms, though, are also sizeable, and have to be taken into account. In this section we derive

improved expressions for the QCD-corrected decay rates, including both kind of e�ects, for large

tan� values.

The one-loop QCD-corrected expressions for the t (H+) decay rates [18-21] can be greatly

simpli�ed after expanding them in a series in powers of r
b
(q
b
) and retaining only the �rst-order

term. As we are mainly interested in the region of large tan�, we will provide formulae valid for

those values of tan�, for which eqs. (24), (25) apply. An explicit evaluation of the departure from

this approximation for the one-loop result will be done in section 4.
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In the H+ case we perform a simultaneous expansion in powers of r
b
and rt. Retaining terms

up to r3t and considering the logarithmic factors to be of O(1), the resulting approximation to the

one-loop formula is

�
app

QCD
(H+ ! t�b) =

g2Nc

32�M2
W

M3
H+ (1� rt)

2 rb tan
2� �

(
1 +

�s
�

"
3 + 6 rt + r2t �

16

27
r3t + 2 log(rb) +

�
�4 rt �

10

3
r2t �

40

9
r3t

�
log(rt)

#)
: (26)

As can be seen from the above equation, there is no need to do the resummation of the log rt
logarithms, as they are either small when rt is close to 1 or suppressed by at least a power of rt
when it is small.

In the limit of very small rt, eq. (26) reduces to

�QCD(H
+ ! t�b) =

�
1 +

�s
�
( 3 + 2 log rb )

�
�(0)(H+ ! t�b) ; (27)

where we have introduced the quantity �(0), which is formally identical to �tree but has as input

parameters the on-shell renormalized ones. The �nite part in eq. (27), 3�s=�, stands for a correction

of about +10% (for �s ' 0:1), whereas the full correction is large and negative, due to the much

bigger logarithmic term.

For the t! bH+ decay, the expansion in q
b
reads

�
app

QCD
(t! bH+) '

g2m3
t

64�M2
W

(1� q
H+)

2 qb tan
2�

�
1 +

4�s
3�

�
"
9

4
�
2�2

3
+
3

2
log qb �

q
H+

1� q
H+

log q
H+ +

2� 5 q
H+

2 q
H+

log(1� q
H+)

+ log q
H+ log(1� q

H+) + 2ReLi2(1� q
H+)

#)
: (28)

In the limit q
H+ ! 1, the ratio �QCD=�

(0) becomes in�nite and perturbation theory breaks

down, as the b-quark moves too slowly in the top rest frame. Nevertheless, the correction goes to

zero due to the presence of the kinematic suppression factor.

At this point we are ready to incorporate the resummation of the leading and next-to-leading

q
b
, r

b
logarithms, as explained in section 2.2, which amounts to replacing m

b
in eqs. (26) and (28)

by the running bottom mass at the proper scale.4 The one-loop QCD-corrected widths are then, in

the large tan� limit and including renormalization group e�ects up to next-to-leading order, given

by the following improved (imp) formulae

�
imp

QCD
(t! bH+) =

g2

64�M2
W

mt (1� q
H+)

2 m2
b(m

2
t ) tan

2� �
(
1 +

�s(m
2
t )

�

"
7�

8�2

9
� 2 log(1� q

H+) + 2 (1 � q
H+)

+

�
4

9
+
2

3
log(1� q

H+)

�
(1� q

H+)
2

#)
; (29)

4We refer the reader to Appendix B for a proof of that statement.
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�
imp

QCD
(H+ ! t�b) =

g2Nc

32�M2
W

M
H+ (1� rt)

2 m2
b(M

2
H+) tan

2� �

(
1 +

�s(M
2
H+)

�

�
17

3
+ 6 rt + r2t �

16

27
r3t +

�
�4 rt �

10

3
r2t �

40

9
r3t

�
log(rt)

�)
; (30)

where �s(Q
2) is the MS-scheme running coupling constant and m

b
(Q2) the MS running mass

expressed in terms of the bottom pole mass.

Finite parts in �imp and �app di�er (see e.g. the 17=3 in eq. (30) and the 3 in eq. (26)). There

is an implicit scheme conversion in going from eqs. (26), (28) to eqs. (29), (30): the bottom pole

mass has been replaced for the running MS mass in the prefactor and the log(r
b
) has been absorbed

into m
b
. Notice that the non-logarithmic terms of �

app

QCD
have been explicitly included in �

imp

QCD
, as

they are not accounted for by the renormalization group resummation techniques.

3.2 Supersymmetric corrections

The e�ective lagrangian prediction for the SUSY-QCD and SUSY-EW corrected decay rates can

be read from eq. (21). No tan�-enhanced vertex corrections contribute to the matching and the

result is obtained by simply inserting the e�ective coupling, eq. (3), into the zeroth-order width

�
eff

SUSY
=

1�
1 +�m

b

�2 �(0) : (31)

We want to compare eq. (31) with the diagrammatic on-shell expressions for the one-loop SUSY-

QCD and SUSY-EW corrected t! bH+, H+ ! t�b partial widths [14, 16, 17], which we will denote

by �
1�loop
SUSY

. For large tan� values, the only sizeable diagrams are those that contribute to the scalar

part of the bottom quark self-energy, entering the computation through the mass counterterm. For

the SUSY-QCD corrections, the diagram that matters is shown in �g. 4. By simple power counting

one can realize that it is �nite. Moreover, neglecting O(m2
b
=M2

SUSY
) contributions, its value is

essentially given by that of the three-point diagram in eq. (6): �m
SQCD

b
.

Similarly, the diagram relevant to the SUSY-EW corrections is a two-point one with a chargino

(neutralino) and a stop (sbottom) inside the loop. As for the SUSY-QCD case, it is �nite, and

its value can be approximated by the corresponding three-point diagram where an extra H0
2 leg is

attached to the scalar line. Its contribution is thus given by �mSEW

b
in eq. (9).

Collecting the results from eqs. (6) and (9) via eq. (5), the one-loop SUSY corrected decay rates

can be cast into the formula

�
1�loop
SUSY

=
�
1� 2�mb

�
�(0) +��SUSY : (32)

The term ��SUSY , which contains non-universal and tan�-suppressed contributions to the decay,

is very small provided tan� is large, as we have numerically checked.

Both prescriptions, eqs. (32) and (31), are equivalent at �rst order in perturbation theory (PT)

and consequently do not di�er signi�cantly when the corrections are small. In general, though,

�m
b
can be a quantity of O(1) for large enough tan� values, in which case eq. (31) is preferred as

it correctly encodes all higher-order �m
b
e�ects (see the discussion in section 2.1 and in Appendix

B).

3.3 Full MSSM renormalization group improved correction

In section 2.2, we saw how the e�ective lagrangian (21) accounts for the higher-order tan�-enhanced

SUSY quantum corrections and also for the leading and next-to-leading QCD logarithms, including

12



those in diagrams like �g. 2. We de�ne the improved values for the decay rates of the two processes

under study in the MSSM as

�
imp

MSSM
= �

imp

QCD

1�
1 +�m

b

�2 +��SUSY ;

which also incorporates the one-loop �nite QCD e�ects. Neglecting the small tan�-suppressed

��SUSY e�ect, one has

�
imp

MSSM
(H+ ! t�b) =

g2Nc

32�M2
W

M
H+ (1� rt)

2 m2
b
(M2

H+)�
1 +�m

b

�2 tan2� �

(
1 +

�s(M
2
H+)

�

�
17

3
+ 6 rt + r2t �

16

27
r3t +

�
�4 rt �

10

3
r2t �

40

9
r3t

�
log(rt)

�)
; (33)

�
imp

MSSM
(t! bH+) =

g2

64�M2
W

mt (1� q
H+)

2 m2
b
(m2

t )�
1 +�m

b

�2 tan2� �

(
1 +

�s(m
2
t )

�

"
7�

8�2

9
� 2 log(1� q

H+) + 2 (1 � q
H+)

+

�
4

9
+
2

3
log(1� q

H+)

�
(1� q

H+)
2

#)
: (34)

The above formulae contained all the improvements discussed in this article. In order to compare

them to the diagrammatic one-loop MSSM results, we introduce �
1�loop
MSSM

�
1�loop
MSSM

= �
imp

QCD

�
1�loop
SUSY

�(0)
; (35)

which only di�ers from �
imp

MSSM
in that no resummation of the SUSY-QCD, SUSY-EW corrections is

performed. Comparing �
1�loop
MSSM

, �
imp

MSSM
one can assess the size of the higher-order tan�-enhanced

e�ects.

4 Results on the decay rates

Although the t ! bH+ and H+ ! t�b decays are mutually exclusive, in the e�ective 2HDM

lagrangian we constructed in section 2, the supersymmetric corrections to both observables are

encoded in the same e�ective coupling. Therefore, we prefer to present the study of these corrections

simultaneously, stressing the points they have in common.

To quantify the importance of the quantum corrections we introduce the relative correction to

the width �, de�ned as

��x =
�x � �tree

�tree
: (36)

4.1 One-loop vs. NLO-improved QCD corrections

Figures 5 and 6 analyse the gluonic corrections to the t! bH+ and H+ ! t�b decay rate, showing

their dependence on the mass of the charged Higgs boson for tan� = 10 and 30. The dotted lines

represent the relative shifts, ��
1�loop
QCD

(36), produced by the one-loop QCD corrections, �
1�loop
QCD

,

which have been computed using the formulae in refs. [19, 21].
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In the limit of large tan� and small q
b
, r

b
, the above one-loop results admit simpler approximate

expressions, which we have derived in eqs. (26), (28). These approximations have a lower bound of

validity, which can be roughly set at tan� = 10. In this paper we will not consider values of tan�

smaller than 10. Inserting the expansions (26), (28) into eq. (36), one obtains the corresponding

relative shifts ��
app

QCD
for the t ! bH+ and H+ ! t�b partial widths, which are plotted using the

dashed lines in �gs. 5 and 6 respectively.

For tan� = 10, the �rst term in the r
b
expansion of the non tan�-enhanced one-loop QCD

corrections to the t ! bH+ decay rate stands for a contribution of about 5%. For the sake of

simplicity, we omitted this term in eq. (28), but we have included it when drawing the ��
app

QCD

curve in �g. 5. The extra correction is almost negligible for the tan� = 30 curve. In the H+ ! t�b

decay rate, �g. 6, and for tan� � 10, eq. (26) is always extremely close to the one-loop result, and

the ��
app

QCD
curves are not shown.

As can be seen in �g. 5, a discrepancy appears between ��
app

QCD
and ��

1�loop
QCD

close to the

threshold, which can be traced back to the fact that we dropped the m
b
kinetic terms in the

approximated formula. Similar problems should be present in the H+ ! t�b case, �g. 6, when

approaching the threshold, but our plot starts at a conservative M
H+ = 250 GeV value for which

the truncated series, eq. (26), with rt = 0:5, is still valid. In any case it makes no sense to try to

include higher-order rnt terms because close to the threshold the perturbative expansion is no longer

reliable: the decay products move slowly in the decay particle's rest frame, and long-distance non-

perturbative e�ects can signi�cantly modify the perturbative prediction. Moreover, in this region

the branching ratio is very small and therefore the corresponding decay channel loses its relevance

for the charged Higgs phenomenology.

As was justi�ed in section 2 using the operator product expansion, the replacement of the renor-

malized bottom mass and strong coupling by their running two-loop MS values correctly resums

leading and next-to-leading r
b
, q

b
logarithms. In eqs. (29), (30) the substitution was explicitly

done. In �g. 5 the numerical e�ect of the improvement corresponds to the di�erence between the

dashed (��
app

QCD
) and solid (��

imp

QCD
) curves. For the H+ ! t�b decay the improvement is essentially

given by the di�erence between the dotted (��
1�loop
QCD

) and solid (��
imp

QCD
) curves.

Even for moderate tan� values around 10, the QCD corrections are larger than 50%, driven

by the big q
b
, r

b
logarithms. The resummation of the leading logarithms is mandatory, specially

for the H+ decay where log r
b
is unbounded as M

H+ increases. The e�ect of the LO and NLO

resummation diminishes the top partial decay rate in about 5% and the charged Higgs decay rate

in about 15%.

4.2 Supersymmetric corrections

Figure 7 focuses on the genuine supersymmetric corrections to the H+ ! t�b partial width. As they

are dominated by the universal �m
b
e�ect, the results for the H+ ! t�b plot represent fairly well

the e�ects of the corrections on t! bH+ too. Curves are shown for two values of the �-parameter

and for two di�erent sparticle spectra.

In the \heavy" spectrum, the gluino and the lightest sbottom and stop have a common 1 TeV

mass. The squarks and gluinos are nearly degenerate and they are much heavier than the H+ mass,

justifying the use of the e�ective lagrangian approach. As only tan� � 10 values are considered, the

approximation consisting in neglecting the non-universal and tan�-suppressed terms denoted by

��SUSY in eq. (32), which is represented by the dashed ��
app

SUSY
curves, �ts very well the one-loop

calculation (the latter is not shown in this case). The corresponding e�ective lagrangian prediction,

eq. (31), which includes all tan�-leading terms appearing at higher orders in PT, is represented by

the solid ��
eff

SUSY
lines.
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Figure 5: Comparison of the QCD contributions to the t ! bH+ decay width, as a function of

M
H+ , for tan� = 10 (upper set) and 30 (lower set). The dotted line denotes the one-loop result [21],

the dashed line the approximation of eq. (28), and the solid line the NLO-improved one in eq. (29).
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Figure 6: Comparison of the QCD contributions to the H+ ! t�b decay width, as a function of

M
H+ , for tan� = 10 (upper set) and 30 (lower set). The dotted line corresponds to the one-loop [19]

correction, and the solid line to the NLO-improved result, eq. (30).
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A second, lighter, spectrum is de�ned byM~g = 500 GeV, and the masses of the lightest sbottom

and stop around 200 GeV. The curve labelled ��
1�loop
SUSY

corresponds to the full one-loop computation,

including all possible gluino, chargino and neutralino loops. Even for this light spectrum and for the

chosen set of parameters, ��
app

SUSY
gives a good estimate of the one-loop correction. This illustrates

the fact that our e�ective lagrangian L in eq. (21) describes the charged Higgs interaction correctly

even if M
SUSY

< M
H+ . It shows that �mb

accounts for most of the e�ects and we can trust the

validity of the improved result.

Typical values we found for the SUSY correction are 15%{30% with the heavy spectrum and

� 40% with the light one. In both cases, the results depend heavily on the � and tan� parameters,

the size of the correction growing almost linearly with their absolute values. Although not shown

in the plots, the main contribution to ��
SUSY

comes from the SUSY-QCD diagrams. Only for a

very large At values can the electroweak corrections be comparable.

The ��
eff

SUSY
curves correspond to the relative correction to the widths as evaluated using

eq. (31), an expression derived from the e�ective lagrangian in section 2. While ��
1�loop
SUSY

, ��
app

SUSY

do not include higher-order �mn

b
e�ects (which can be potentially of O(1)) these tan�-dominant

e�ects are correctly resummed to all orders in PT in the expression for ��
eff

SUSY
.

The di�erence between ��
eff

SUSY
and ��

app

SUSY
�rst appears at order (�m

b
)2, and is always

positive, opposite to the negative standard QCD corrections, for �m
b
> �1:5.5 Therefore, for

negative (positive) values of �m
b
, that is, positive (negative) corrections ��

1�loop
SUSY

, the higher-order

terms tend to reinforce (suppress) the correction. As �m
b
is mainly given by the SUSY-QCD

contribution, eq. (6), this correlation is seen in association with the sign of �.

Just to give some examples, for a negative ��
1�loop
SUSY

= 30% correction, which corresponds to

�m
b
= �0:15, the extra higher-order terms contained in ��

eff

SUSY
increase the partial width by 8%.

For �m
b
= �0:2, a number that can be obtained from eq. (8) by setting tan� = 20, �s = 0:1, the

di�erence between ��
eff

SUSY
and ��

1�loop
SUSY

is of order +16%.

The only restriction to the potential size of ��
SUSY

is set by the renormalized bottom Yukawa

coupling, which is required to remain perturbative from the GUT scale to the scale of the corre-

sponding decay. This is guaranteed in our calculations by demanding hb < 1:2 at low energies (see

e.g. [13]), implying the following combined bound on tan� and �m
b
:

�mb >
1

1:2

g m
b
(m2

t )p
2M

W

tan� � 1 ' 0:014 tan� � 1 : (37)

In the above example, with tan� = 20, the minimum allowed value for �m
b
is �0:72. If eq. (8)

holds for negative �, and using �s(MSUSY
) � 0:1, it is found that a maximum allowed correction,

��
eff

SUSY
>
� +200%, is obtained around tan� = 40.

4.3 Full MSSM correction

We shall now show the combined e�ects of the QCD, SUSY-QCD and SUSY-EW corrections in

the partial decay widths under study, starting from three di�erent sets of curves: ��
imp

QCD
, i.e. the

QCD correction including the renormalization group resummation of the bottom mass logarithms

up to NLO; ��
1�loop
MSSM

, the full one-loop MSSM contribution as de�ned in eq. (35); and the MSSM-

improved contribution, ��
imp

MSSM
, de�ned in eq. (34).

Figure 8 shows the dependence of the relative corrections to the width ��(t ! bH+) on the

mass scale M
SUSY

, de�ned as a common value for the gaugino mass, M2, the gluino mass and the

5The comparison is between 1=(1 + �mb)
2 and 1 � 2�mb, eq. (32), the approximated one-loop result as de�ned

in this paper and in [17, 15].
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Figure 7: The SUSY contributions to the H+ ! t�b partial decay width, as a function of tan�, for

M
H+ = 350 GeV and two values of �. The dashed lines denote the approximation ��SUSY = 0 of

eq. (32), whereas the solid lines correspond to the e�ective width, eq. (31). For the heavy spectrum

one has M~g = m~b1
= m~t1

= 1 TeV, ~b1, ~t1 being the lightest sbottom and stop respectively. At =

500 GeV, the � values are shown in the plot. For the light spectrum we have set M~g = 500 GeV,

m~b1
= 250 GeV and m~t1

= 180 GeV. In this case, we also show a dotted curve corresponding to

the one-loop result of ref. [15].
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masses of the lightest stop and sbottom. As we keep the value of � �xed, the SUSY contribution

smoothly goes to zero like �=M
SUSY

when M
SUSY

increases. Contrarily, if all mass parameters

are sent to in�nity together, the SUSY correction tends towards a constant value, determined by

�m
b
' �(�s=3�) tan�, eq. (8). A similar behaviour occurs for ��(H+ ! t�b) with a di�erent

renormalized value for ��
QCD

.

The di�erence between ��
imp

QCD
and ��

imp

MSSM
is due to the SUSY corrections, which were already

considered in the above section. The mismatch between ��
1�loop
MSSM

and ��
imp

MSSM
is produced by the

tan�-enhanced higher-order e�ects that are resummed in the latter.

Figure 9 shows how the full MSSM correction evolves with tan�. While ��
QCD

has a mild

dependence on tan� that is almost saturated around tan� = 20, the SUSY part gets more and

more important as tan� increases. One can see that for the chosen parameters ��
SUSY

becomes of

O(10%) around tan�=30. For negative values of �, of O(M
SUSY

), and for su�ciently large tan�

values, the total correction can be considerably reduced with respect to the naive QCD prediction.

A similar behaviour is found for ��(H+ ! t�b).

0 500 1000 1500 2000
MSUSY (GeV)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

δΓ
x=

Γ x/
Γtr

ee
−

1

t−> H
+
 b

δΓMSSM

imp

δΓQCD

imp

δΓMSSM

1−loop

µ=−500 GeV

µ=250 GeV

Figure 8: Evolution of the corrections to the t! bH+ width, for M
H+ = 125 GeV and tan� = 30,

as a function of a \common SUSY mass", M
SUSY

= M2 = M~g = m~b1
= m~t1

, and At = 500 GeV.

The dashed line corresponds to the QCD-improved width, eq. (29), the dotted line denotes the

one-loop MSSM result, eq. (35), and the solid line denotes the MSSM-improved one, eq. (34).
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Figure 9: The corrections to the t! bH+ width for M
H+ = 125 GeV as a function of tan�. The

rest of the parameters are those of the heavy spectrum in �g. 7. The dashed line corresponds to

the QCD-improved width, eq. (29), the dotted line denotes the one-loop MSSM result, eq. (35),

and the solid line denotes the MSSM-improved one, eq. (34).
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5 Results on the branching ratios

Above we have described the e�ects of the QCD, SUSY-QCD and SUSY-EW corrections on the

decay widths of t! bH+ and H+ ! t�b as a function of the MSSM parameter space. In the case

of t ! bH+, assuming that the only other possible decay channel is t ! bW+, we shall present

the results on the BR(t! bH+) and we shall use these computations to exemplify how much the

radiative corrections implemented here can change the actual reach of the Tevatron collider in the

search of H+ in the indirect mode, missing leptons/dileptons in the t! bW+ decay.

Here, the results from the frequentist analysis of D0 indirect H+ searches [5] are used to derive

constraints on the tan�{M
H+ plane (see e.g. [6] for results on similar indirect H+ searches by the

CDF collaboration).

In �g. 10 we draw curves of constant BR(t ! bH+) based on �
imp

QCD
(t ! bH+), eq. (29), and

including the one-loop QCD corrections into the computation of �(t ! bW+). We do not show

curves that have a branching ratio smaller than 0:1 because, for such regions of parameters, the

t! bH+ decay channel has little phenomenological relevance. The grey area at the bottom-right

corner of the �gure is the region excluded by the D0 frequentist analysis data.

The plots in �g. 10 compare to the plots in �g. 11. Here we show curves of constant BR(t !
bH+), using the MSSM-improved formulae for the partial t! bH+ decay rate, eq. (34). The soft

SUSY-breaking masses are chosen to produce a heavy SUSY spectrum, with M~g = m~t1
= m~b1

=

1 TeV. As in �g. 10, the dark area on the bottom-right corner corresponds to the experimentally

excluded region.

For positive values of �m
b
(left plot in �g. 11), both QCD and SUSY-QCD corrections reduce

the tree-level partial width of the t! bH+ decay channel, and the bound on the BRmoves to higher

tan� values. In our example plot, with � = 500 GeV, the excluded region starts at tan� > 100

and it is not shown. Conversely, for negative �m
b
values, the supersymmetric corrections partly

compensate for the QCD reduction of the width, and the bound is found for lower tan� values.

This fact can be checked in the plot on the right of �g. 11, corresponding to � = �500 GeV. Values
larger than 0:4 for BR(t ! bH+) are obtained when tan� >

� 55. The experimental bound starts

around tan� = 65, in a region where hb(mt) > 1:2, which implies that the bottom Yukawa coupling

becomes non-perturbative below the GUT scale [13]. This fact is denoted in the plots by changing

from solid to dashed line style. The same remark applies for �g. 10.

The H+ ! t�b branching ratio, which is expected to be tested at the LHC and at the NLC,

is depicted in �g. 12. On the left plot, contour lines of constant BR are drawn using the QCD

improved width, eq. (30). Similarly, the right plot shows curves of constant BR(H+ ! t�b) for the

MSSM-improved result, eq. (33), with � = 500 GeV, the rest of SUSY parameters being equal to

those of �g. 11. It has been assumed that no decays of H+ into pairs of R-odd SUSY particles [7]

were possible. This is guaranteed by the choice of the soft SUSY-breaking masses and by cutting

the plots at M
H+ = 500 GeV.
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Figure 10: Curves of constant branching ratio for the t ! bH+ channel. The �gure shows the

QCD-improved, eq. (29), result. The transition between the solid and dashed styles occurs when

the bottom Yukawa coupling crosses the bound hb(mt) < 1:2. As explained in the text, this bound

guarantees the perturbativity of the Yukawa up to the GUT scale. Finally, the shaded area de�nes

the 95% C.L. exclusion boundary in the tan�{M
H+ plane for mt = 175 GeV and �(t�t) = 5:5 pb

that can be derived from the D0 frequentist analysis in ref. [5].
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Figure 11: As �g. 10, but plotting the MSSM-improved result, eq. (34), for � = 500 GeV (left plot)

and � = �500 GeV (right plot). The rest of relevant SUSY parameters are given by M~g = M2 =

m~t1
= m~b1

= 1 TeV, At = 500 GeV. In the � = �500 GeV plot, the shaded area is excluded by the

D0 frequentist analysis in ref. [5].
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Figure 12: Curves of constant branching ratio for the H+ ! t�b channel. On the left, the QCD-

improved values, eq. (30), on the right, the MSSM-improved result, eq. (33). The parameters

chosen for these plots are � = 500 GeV, M~g =M2 = m~t1
= m~b1

= 1 TeV, At = �500 GeV.
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6 Conclusions

Using an e�ective lagrangian description of the MSSM, we have investigated the virtual super-

symmetric e�ects that modify the tree-level relation between the bottom Yukawa coupling and the

bottom mass, which are dominant in the large tan� regime. Motivated by the fact that these e�ects

do not vanish for large values of the SUSY masses and are potentially of O(1), we have derived the

expressions for the bottom Yukawa couplings that resum all higher-order tan�-enhanced quantum

e�ects. These expressions have a natural interpretation and are easily deduced in the context of

the e�ective lagrangian formulation. We have also shown that they can be equivalently deduced in

the framework of the full MSSM.

As an interesting application of our results, we have computed the partial decay rates for the

t ! bH+ and H+ ! t�b decay channels, relevant to supersymmetric charged Higgs searches at

present and future colliders. First we have considered the QCD quantum corrections to these

processes and, applying the OPE, we have performed the resummation of the leading and next-

to-leading logarithms of the form log Q=m
b
. Concerning the supersymmetric corrections, we have

compared our results with those of previous diagrammatic one-loop analyses in the literature and

we have shown the numerical relevance of the resummation of the tan�-enhanced e�ects derived

in this work. Collecting the above improvements, we have �nally computed the corresponding

branching ratios, BR(t! bH+) and BR(H+ ! t�b). As an example, we have shown, for di�erent

sets of the MSSM parameters, the e�ect of the quantum corrections in determining the region of

the M
H+{tan� plane excluded by the D0 indirect searches for a supersymmetric charged Higgs

boson in the decay of the top quark.
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Appendix A The e�ect of �mb at all orders

In this appendix we perform the resummation, in perturbation theory, of the leading supersym-

metric e�ects contained in �m
b
and �nd agreement with the e�ective lagrangian result of sect. 2.

When relating tan� to physical decay rates or to quark masses and Yukawa couplings one

also has to address the question of the proper treatment of standard QCD corrections. This

issue seems to come into play in the very beginning when one de�nes the renormalization scheme

and scale for the bottom quark mass, which, for example, enters the o�-diagonal elements of

the b-squark mass matrix. Here we want to stress that the issues of large supersymmetric tan�-

enhanced corrections related to the diagram in �g. 4 and the treatment of standard QCD corrections

related to gluonic corrections to the quark self-energy can be treated independently of each other.

In the following we shall concentrate on the tan�-enhanced SUSY-QCD corrections, induced by

supersymmetric particle loop e�ects. After performing the resummation of these corrections to all

orders in perturbation theory, one can subsequently include the standard QCD corrections, whose

proper treatment is discussed in sect. 2.

The quantity �m
b
is proportional to (�s=�)(� tan�=MSUSY

) and of O(1) when, simultaneously,
� � M

SUSY
and tan� is large. In that case one should resum its e�ects to all orders in PT to

obtain a reliable prediction. As was shown in section 2, the �rst thing one should realize is that

there are no higher-loop diagrams contributing to the mass renormalization (nor to the decay rate)

of order �ns tan
n� with n > 1. Diagrams with extra � tan� insertions are suppressed by powers of

m2
b
=M2

SUSY
. This can be easily seen in the e�ective lagrangian approach, where such contributions

would arise from higher-dimensional operators with more Higgs boson �elds, whose couplings are

suppressed by extra powers of M
SUSY

.

Di�erent renormalization schemes use di�erent values for the renormalized bottom Yukawa

coupling hb [22]. In theories with spontaneous symmetry breaking, though, there is always a link

between the value of hb and the physical bottom mass, m
b
: the dressed bottom propagator must

have a pole for on-shell external legs, or conversely the inverse propagator must vanish. At one

loop this relation reads, considering only the gluino corrections

hbv1 + �hbv1 + hbv1�mb = mb ; (38)

�hb being the counterterm of hb. The l.h.s. of the previous equation is graphically depicted in

�g. 13.

+ +
~ba

~g

Figure 13: Feynman diagrams contributing to the bottom pole mass up to �rst order in PT. From

left to right, the renormalized bottom mass, the bottom mass counterterm and the �nite one-loop

Feynman graph contributions are shown. The dashed line in the last diagram denotes a sbottom

and the solid line a gluino. The cross represents the insertion of the bottom mass counterterm.

We are not displaying the wave function renormalization to avoid an unnecessary complication

of the argument. Note that v1 receives no one-loop QCD corrections and thus its renormalization

only adds e�ects suppressed by �EW=�s, which allows us to identify �hbv1 with �m
b
. Besides, in

any renormalization scheme one has mR

b
= hbv1, with m

R

b
and hb denoting renormalized quantities.
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Therefore,

(hb + �hb) v1 = mR

b + �mb ; (39)

and one obtains, at �rst order

mR

b + �mb = mb �mR

b �mb: (40)

The l.h.s. of eq. (40) is just the bare bottom mass, m0
b
.

When evaluated beyond �rst order, scheme di�erences appear in the r.h.s. of eq. (40). In the

on-shell scheme, the renormalization condition being given by m
b
= hbv1 = mR

b
, one would obtain

that the bare bottom mass is equal to m
b
(1��m

b
), while in the MS-scheme, for which �m

b
is

zero as �m
b
is �nite, one would have m

b
=(1 + �m

b
). Both results are equivalent at �rst order in

�m
b
, as they should.

To proceed with the resummation, we come back to the relation between the Yukawa and the

pole mass. Although no n-loop diagrams produce �ns tan
n� corrections for n � 2, there is one and

only one genuine n-th-order diagram left (see �g. 14), which contains the insertion of a (n�1)-loop

counterterm into a one-loop diagram. Then, all dominant terms in the large tan� limit, at all

orders in PT, are contained in the equation

hbv1 + �hbv1 + ~hbv1�mb + �~hbv1�mb = mb: (41)

+ + +

Figure 14: Full set of SUSY-QCD dominant diagrams, in the large tan� limit, contributing to the

bottom pole mass at all orders in PT. The �rst three diagrams are those of �g. 13. In the fourth

one, the cross denotes the insertion of the �~hb counterterm, and the solid and dashed lines denote

gluino and sbottom propagators respectively (see �g. 16).

Beyond tree level, the ~bL~bRH
0
2 coupling is no longer equal to hb, so it is denoted by ~hb, with

counterterm �~hb.
6 This fact was not important in eq. (38) because we were just considering the

�rst-order result.

Before proceeding, one technical point in equation (41) deserves further clari�cation. The last

term in the l.h.s. corresponds to the true three-point diagram in �g. 14. In the large tan� limit,

though, its value, �~hbv1�mb
, coincides with the two-point contribution, ~hbv1�mb

, after replacing

the renormalized coupling by the counterterm. A derivation of this result is written at the end of

this appendix.

The last step in our argument is to justify the equality

hb + �hb = ~hb + �~hb ; (42)

which can be regarded as the identity of the bare quark and squark Yukawa couplings, which is

guaranteed by the underlying supersymmetry governing the relations between the bare lagrangian

parameters in the ultraviolet.7 No soft SUSY-breaking dimensionful couplings can induce modi�-

cations to eq. (42), allowing for the extraction of a common hbv1+�hbv1 factor in (41). At the level

6The tree-level coupling is in fact mb� tan�, but again neither � nor tan� receive QCD corrections at �rst order.
7This is true if a regularization method preserving SUSY is used, such as dimensional reduction. Deviations from

eq. (42) in the MS-scheme will be loop-suppressed, not a�ecting the conclusions of this appendix.
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of bare couplings one does not need to make reference to any particular renormalization scheme.

Thus, one has

(hb + �hb) v1 = mR

b + �mb =
m
b

1 +�m
b

; (43)

where the r.h.s. is expressed in terms of physical quantities, �m
b
being independent of m

b
.

For the rest of this appendix we will derive expressions valid to all orders in PT in the large tan�

limit for the H+ and H;h;A dressed couplings to t�b and b�b respectively, recovering the e�ective

lagrangian results one can �nd in [24]. The calculation involves contributions from three-point loop

diagrams with one external on-shell Higgs leg whose momentum we have neglected. In section 4,

the departure from this assumption for the H+ and t decay rates has been shown to be small, as the

extra contribution inducing the momentum dependence does not include any tan� enhancement

factor. More complete formulae including the momentum dependence for the decay rates of the

neutral Higgs bosons can be found in ref. [30].

Let us start with the simplest case, that of the charged Higgs H+ and of the pseudoscalar A,

for which there are no vertex loop diagrams tan�-enhanced with respect to the tree-level coupling.

The relevant Feynman diagrams are just the tree-level Yukawa and the counterterm. From eq. (43),

the renormalized decay amplitudes are given by

i (hb + �hb) sin� H
+�tPRb = i

m
b
tan��

1 +�m
b

�
v
H+�tPRb ;

� (hb + �hb)
sin�
p
2
A�b5b = �

m
b
tan�

p
2
�
1 +�m

b

�
v
A�b5b : (44)

Therefore, in this case, the result of the resummation is to e�ectively modify the tree-level Yukawa

coupling by the universal 1=(1 + �m
b
) factor.

The case of the CP-even neutral Higgs bosons is a little bit more involved. Depending on the

relation between � and the mixing angle, �, the one-loop correction to the vertex diagrams can be

importantly enhanced. The full set of potentially relevant graphs is shown in �g. 15.

+ +

~ba

~g

~bb

+

~ba

~g

~bb

Figure 15: Vertex diagrams contributing to the renormalization of the Higgs-fermion Yukawa inter-

action. From left to right, the renormalized Yukawa coupling, the Yukawa counterterm, the one-loop

contribution and the higher-order diagram containing the insertion of the �~hb counterterm. The

solid and dashed lines inside the loops denote gluino and sbottom propagators respectively. The

cross in the fourth diagram denotes the �~hb counterterm.

One obtains, for the H�bb renormalized amplitude

�i (hb + �hb)
cos�
p
2

H�bb� i
�
~hb + �~hb

� sin�
p
2

�m
b

tan�
H�bb =

�i
m
b
cos�

p
2
�
1 +�m

b

�
v1

�
1 +�mb

tan�

tan�

�
H�bb : (45)
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Again, the resummation amounts to the inclusion of the universal 1=(1 + �m
b
) factor. However,

there is an additional �m
b
term inside the parenthesis, which constitutes the non tan�-suppressed

contribution coming from the SUSY-QCD vertex diagrams. Similarly, for the h�bb one has

i (hb + �hb)
sin�
p
2
h�bb� i

�
~hb + �~hb

� cos�
p
2

�m
b

tan�
h�bb =

i
m
b
sin�

p
2
�
1 +�m

b

�
v1

�
1�

�m
b

tan� tan�

�
h�bb : (46)

It can easily be checked that for large M
H+ values, the limit that corresponds to the e�ective

decoupling of one of the Higgs doublets, one recovers the SM h�bb coupling

�i
m
bp
2v

h�bb ;

whereas the H�bb coupling, H being heavy, still \feels" the decoupled sector

�i
m
b
tan�

p
2
�
1 +�m

b

�
v
H�bb :

bL

~ba

~g

~bb

bR�~hb

Figure 16: The fourth self-energy diagram in �g. 14, shown in greater detail. A gluino propagator

is denoted by the solid line inside the loop. The dashed lines denote sbottom propagators and the

cross the insertion of a �~hb counterterm.

Two-point{three-point diagram identity

Let us evaluate the amplitude associated to the three-point Feynman diagram of �g. 16. Neglecting

the external momentum, it can be written

� (8��s) CF

�~hbv1p
2

M~g � tan�

Z
dnk

(2�)n

�
Zi1Z

�

j2 + Zi2Z
�

j1

�
Zj2Z

�

i1

(k2 �M~g)(k
2 �m2

~bi
)(k2 �m2

~bj
)
�bPLb ; (47)

where CF = 4=3 is a colour factor and the two-dimensional rotation matrices Z transform the weak

eigenstate sbottom basis into the mass eigenstate basis. Expressed in terms of the mixing angle �~b,

the components of Z read: Z11 = Z22 = cos�~b, Z12 = �Z21 = sin�~b. The term between parentheses

in the numerator of (47) and the combination �~hbv2 = �~hbv1 tan� come from the counterterm to

the tan�-dominant interaction H0
2
~b�
R
~bL, after the Higgs �eld develops its vacuum expectation value

v2.
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Splitting the implicit i; j sum into the i = j part and the rest of the terms we obtain

�

2
sin22�~b

Z
dnk

(2�)n
1

k2 �M2
~g

0
@ 1

(k2 �m2
~b1
)2

+
1

(k2 �m2
~b2
)2

1
A �bPLb

+ � cos22�~b

Z
dnk

(2�)n
1

(k2 �M2
~g )(k

2 �m2
~b1
)(k2 �m2

~b2
)
�bPLb ; (48)

the constant � being a short-hand for the constant prefactor of the integral in (47).

The second term in (48) is of the same form as �m
b
. Adding and removing this term times

tan22�~b and rearranging terms one arrives at

�

Z
dnk

(2�)n
1

(k2 �M2
~g )(k

2 �m2
~b1
)(k2 �m2

~b2
)
�bPLb

+
�

2
sin22�~b

Z
dnk

(2�)n
1

k2 �M2
~g

(m2
~b2
�m2

~b1
)2

(k2 �m2
~b1
)2(k2 �m2

~b2
)2
�bPLb : (49)

Now one can make use of the tree-level relation

sin2�~b =
2m

b
(Ab � � tan�)

m2
~b1
�m2

~b2

(50)

to write (Ab is dropped since it is not tan�-enhanced)

�

Z
dnk

(2�)n
1

(k2 �M2
~g )(k

2 �m2
~b1
)(k2 �m2

~b2
)
�bPLb

+ 2�m2
b (� tan�)

2
Z

dnk

(2�)n
1

(k2 �M2
~g )(k

2 �m2
~b1
)2(k2 �m2

~b2
)2
�bPLb : (51)

The second integral in (51) has two extra propagators and thus in the limit of heavy SUSY

masses it is of O(1=M6
SUSY

), whereas the �rst one is of O(1=M2
SUSY

). One can conclude that the

two- and three-point loop diagrams in �g. 14 are just related by �~hb=~hb, apart from contributions

that are suppressed by powers of either tan� or m2
b
tan2�=M2

SUSY
. The amplitude for the diagram

in �g. 16 reduces to

i �~hbv1�mb

"
1 +

�2

M2
SUSY

� O

 
m2
b
tan2�

M2
SUSY

!
+ O

�
1

tan�

�#
�bPLb : (52)
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Appendix B Large logarithms in decay rates

Our e�ective lagrangian L in eq. (21) contains the large logarithms associated with the running of

the Yukawa couplings to all orders in perturbation theory. In general this procedure does not sum

all the large logarithms that appear in a speci�c cross section or decay rate. In this appendix we

show that for �(t ! bH+) and �(H+ ! t�b) such additional, process-speci�c logarithms do not

occur except in highly power-suppressed, numerically negligible terms.

Let us �rst consider the decay H+ ! t�b: the optical theorem relates the decay rate to the

imaginary part of the H+ self-energy:

�(H+ ! t�b) =
1

M
H+

Im i

Z
d4x e�iq�xhH+ jT Jy(x)J(0)jH+ i

����
q2=M2

H+

: (53)

Here

J(x) =
g

p
2M

W

mb(Q)

1 + �m
b

Vtb tan� H
+ tLbR(x;Q)

is the scalar current stemming from the Yukawa interaction in eq. (21). All currents and couplings in

this appendix are considered to be renormalized using a mass-independent renormalization scheme

such us the MS scheme [28]. For the moment we also assume this for the quark masses and discuss

the use of the pole mass de�nition, which is commonly used for the top mass, later. The decay rate

involves highly separated mass scales m
b
� M

H+ ;mt. First we assume that M
H+ and mt are of

similar size so that logM
H+=mt is not dangerously large. We return to the case m

b
� mt �M

H+

later. To prepare the resummation of the large logarithm logm
b
=M

H+ , we �rst perform an operator

product expansion of the bilocal forward scattering operator in eq. (53):

i

Z
d4x e�iq�xhH+ jT Jy(x)J(0)jH+ i =

X
n

Cn

�
q2;mt; Q

�
hH+ jOnjH+ i (mb; Q) : (54)

Here all dependence on the heavy mass scales mt and q2 = M2
H+ is contained in the Wilson

coe�cient Cn, while the dependence on the light scale m
b
resides in the matrix element of the local

operator On. Both depend on the renormalization scale Q at which the OPE is carried out (so

that Q is sometimes called factorization scale). The OPE provides an expansion of �(H+ ! t�b)

in terms of (m
b
=M

H+)
2. Increasing powers of m

b
=M

H+ correspond to increasing twists of the local

operator On. Here the twist is de�ned as the dimension of the operator On minus the number of

derivatives acting on the Higgs �elds in On.

The OPE in eq. (54) is depicted in �g. 17 where also the leading twist operatorO1 = m2
b
(Q)H+H�

is shown. At leading twist the OPE, depicted in �g. 17, is trivial: the matrix element hH+ jO1jH+ i
simply equals m2

b
(Q) and the Wilson coe�cient C1 can be read o� from eq. (33). In the leading

order (LO) of QCD it reads

Im C1 =
g2Nc

32�M2
W

M2
H+ (1� rt)

2 1�
1 +�m

b

�2 tan2�: (55)

The QCD radiative corrections in � contain powers of the large logarithm �s logmb
=M

H+ . The

OPE in eq. (54) splits this logarithm into �s logQ=MH+ +�s logmb
=Q: the former term resides in

the coe�cient function C1 while the latter is contained in the matrix element hH+ jO1jH+ i. If we
choose Q = O(mt;MH+), then the logarithms in the Wilson coe�cient are small and perturbative,

but logm
b
=Q in the matrix element is big and needs to be resummed to all orders. One could

likewise choose Q ' m
b
and resum the large logarithm in the Wilson coe�cient, but the former
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H+

t

H+

b

H+ H+

Figure 17: The OPE in (54) to leading order in m
b
=M

H+ and �s. The self-energy diagram on the

left represents the left-hand side of eq. (54). The right diagram depicts hH+ jO1jH+ i.

way is much easier here. In order to sum logm
b
=Q we have to solve the renormalization group

(RG) equation for O1. Since the Higgs �elds in O1 have no QCD interaction, the solution of the

RG equation simply amounts to the use of the well-known result for the running quark mass m
b
(Q)

(see eq. (18)) at the scale Q = O(mt;MH+) in O1. In the next-to-leading (NLO) order one has

to include the O(�s) corrections to � in eq. (33). First there are no explicit one-loop corrections

to hH+ jO1jH+ i, so that in the NLO we obtain Im C1(Q) by simply multiplying the result in

eq. (55) with the curly bracket in (33). Secondly in the NLO we have to use the two-loop formula

for mb(Q) in the matrix element. Since one is equally entitled to use Q =M
H+ (as chosen in (33))

or Q = mt or any other scale of order mt;MH+ , there is a residual scale uncertainty. This feature

is familiar from all other RG-improved observables. To the calculated order �s this uncertainty

cancels, because there is an explicit term �s logQ=MH+ in the one-loop correction, so that the scale

uncertainty is always of the order of the next uncalculated term. In our case this is O(�2s) and
numerically tiny. In conclusion, our OPE analysis shows that at leading order in m

b
=M

H+ all large

logarithms in �(H+ ! t�b) can indeed be absorbed into the running quark mass in our e�ective

lagrangian in eq. (21). Some clarifying points are in order:

1) The summation of large logarithms in the NLO does not require the calculation of the two-

loop diagrams obtained by dressing the diagram in �g. 17 with an extra gluon, as performed

in [31]. This calculation only gives redundant information, already contained in the known

two-loop formula for the running quark mass.

2) At the next-to-leading order the result depends on the chosen renormalization scheme. Chang-

ing the scheme modi�es the constant term 17/3 in eq. (33). After inserting the NLO (two-loop)

solution (18) for the running mass, this scheme dependence cancels between this term and

J (f) in eq. (19). In the literature, sometimes, the one-loop result for � is incorrectly combined

with the one-loop running bottom mass resulting in a scheme-dependent expression.

No running top-quark mass is needed for the case mt ' M
H+ , and one can adopt the pole

mass de�nition for mt as we did.

3) The OPE also shows that the correct scale to be used in the running �s in eq. (33) is the

high scale Q = O(mt;MH+) and not the low scale m
b
.

4) The absorption of the large logarithms into the running mass does not work for terms that are

suppressed by higher powers (m
b
=M

H+)
n with respect to the leading contribution considered

by us. Higher-twist operators contain explicit b-quark �elds. At twist-8 there are operators

of the form m3
b
H+H�b�b, where � is some Dirac structure. Solving the RG equation for

these operators yields extra evolution factors in addition to the running mass. These e�ects

occur in corrections of order m4
b
=M4

H+ and are certainly only of academic interest.
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Next consider �(H+ ! t�b) for the case m
b
� mt � M

H+ : in this limit, another large logarithm,

logmt=MH+ , appears. Now we have to perform the OPE in two steps. In the �rst step we again

match the forward scattering operator to local operators as in eq. (54) at a scale Q1 = O(M
H+),

but we treat the top quark as light, so that the dependence on mt now resides in the matrix element

hH+ jO1jH+ i rather than in the Wilson coe�cient. For simplicity we specify Q1 = M
H+ . The

leading power r0t is again represented by the twist-4 operator O1, yet the corresponding Wilson

coe�cient lacks the factor of (1� rt)
2 compared to eq. (55). The terms of order r1t are represented

by O2 = m2
tO1 with C2 = �2C1=M

2
H+ . At twist-8 di�erent operators of the form m3

tH
+H�t�t

with non-trivial anomalous dimensions occur as discussed in point 4 above. In the second step one

applies an OPE at the scale Q2 = O(mt). At this step the dependence on mt migrates from the

matrix elements into the Wilson coe�cients, which at order r1t amounts to a trivial rescaling of the

coe�cients and operators bymt or 1=mt. To order r
0
t and r

1
t the only e�ect of the OPE is to replace

the top mass in the expression for �(H+ ! t�b) in eq. (33) by a running top mass mt(MH+), and

to omit the explicit term proportional to rt log rt in the O(�s) correction. Since we have adopted
the on-shell de�nition for the top mass, one must either use a running mass de�nition based on the

pole mass (i.e. with mt(mt) = m
pole

t ) or transform the result in eq. (33) to the MS scheme with the

appropriate change in the O(�s) correction. It is a nice check to expand the running mass to �rst

order in �s:

rt (MH+) =
m2
t (MH+)

M2
H+

= rt

�
1 + 2

�s
�
log rt

�
+O

�
�2s

�
with rt = rt (mt)

and to verify that the overall factor (1� rt(MH+))
2 indeed reproduces the rt log rt term in eq. (33).

The terms of order r2t log rt are not correctly reproduced by the running top mass as anticipated

by the occurrence of non-trivial twist-8 operators. The important result of our consideration of the

case m
b
� mt �M

H+ is the absence of terms of the form r0t log rt to all orders in �s. In this case

the additional large logarithm log rt is always suppressed by powers of rt and therefore these terms

are negligible for rt � 1 and need not be resummed.

For the decay t! bH+ the above discussion can be repeated with the appropriate changes in

the OPE: the leading-twist operator is now O1(Q) = m2
b
(Q) tt(Q) and the external state in eq. (54)

is a top quark instead of a charged Higgs boson. We have m
b
� mt;MH+ and the factorization

scale Q is again of order mt;MH+ . While O1 now involves strongly interacting �elds, its matrix

element h t jO1j t i(Q) still does not contain large logarithms logmb
=Q other than those contained in

the running mass mb(Q). Hence the proof above for �(H
+ ! t�b) applies likewise for �(t! bH+).

After exchanging VtbtLbR for VcbcLbR in eq. (21), we can likewise apply our e�ective lagrangian L
to semileptonic B-meson decays corresponding to b! c ` �` by using the appropriate scale Q ' m

b

in L. The QCD radiative corrections involve no large logarithm, because the gluons couple only to

the b and c quarks. Hence the e�ective four-fermion operator cLbR `R�L obtained after integrating

out the heavy H+ renormalizes in the same way as the quark current cLbR in L. The corresponding
loop integrals do not depend onM

H+ at all and this feature is correctly reproduced by usingmb(mb
)

in L. The situation is di�erent in physical processes in which the charged Higgs connects two quark

lines, as for example in the loop-induced decay b! s . Here e�ective four-quark operators, which

involve a non-trivial renormalization group evolution, occur. The large-tan� supersymmetric QCD

corrections associated with �m
b
and the H+tLbR Yukawa coupling, however, are still correctly

reproduced by applying L to b! s  or other loop-induced rare b-decays. Yet it must be clear that

these corrections are part of the mixed electroweak-QCD two-loop contributions and that there are

already supersymmetric electroweak contributions at the one-loop level, which are process-speci�c

and of course not contained in L.
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